Source code for pyhgf.response

# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>

from typing import TYPE_CHECKING

import jax.numpy as jnp
from jax.typing import ArrayLike

from pyhgf.math import binary_surprise, gaussian_surprise

if TYPE_CHECKING:
    from pyhgf.model import HGF


[docs] def first_level_gaussian_surprise( hgf: "HGF", response_function_inputs=None, response_function_parameters=None ) -> float: """Gaussian surprise at the first level of a probabilistic network. .. note:: The Gaussian surprise at the first level is the default method to compute surprise for continuous models. The function returns `jnp.inf` if the model could not fit at a given time point. Parameters ---------- hgf : An instance of the HGF model. response_function_inputs : The inputs to the response functions, not required here. response_function_parameters : Additionnal parameters for the response function, not required here. Returns ------- surprise : The model's surprise given the input data. """ # compute the sum of Gaussian surprise at the first level # the input value at time t is compared to the Gaussian prediction at t-1 surprise = gaussian_surprise( x=hgf.node_trajectories[0]["mean"], expected_mean=hgf.node_trajectories[1]["expected_mean"], expected_precision=hgf.node_trajectories[1]["expected_precision"], ) # Return an infinite surprise if the model could not fit at any point return jnp.where(jnp.isnan(surprise), jnp.inf, surprise)
[docs] def total_gaussian_surprise( hgf: "HGF", response_function_inputs=None, response_function_parameters=None ) -> float: """Sum of the Gaussian surprise across the probabilistic network. .. note:: The function returns `jnp.inf` if the model could not fit at a given time point. Parameters ---------- hgf : An instance of the HGF model. response_function_inputs : The inputs to the response functions, not required here. response_function_parameters : Additionnal parameters for the response function, not required here. Returns ------- surprise : The model's surprise given the input data. """ # compute the sum of Gaussian surprise across every node surprise = 0.0 # then we do the same for every node that is not an input node # and not the parent of an input node for i in range(len(hgf.edges)): if hgf.edges[i].node_type == 2: surprise += gaussian_surprise( x=hgf.node_trajectories[i]["mean"], expected_mean=hgf.node_trajectories[i]["expected_mean"], expected_precision=hgf.node_trajectories[i]["expected_precision"], ) # Return an infinite surprise if the model could not fit at any point return jnp.where( jnp.any(jnp.isnan(hgf.node_trajectories[1]["mean"])), jnp.inf, surprise )
[docs] def first_level_binary_surprise( hgf: "HGF", response_function_inputs=None, response_function_parameters=None ) -> float: """Time series of binary surprises for all binary state nodes. .. note:: The binary surprise is the default method to compute surprise when `model_type=="binary"`, therefore this method will only return the valid time points, and `jnp.inf` if the model could not fit. Parameters ---------- hgf : An instance of the HGF model. response_function_inputs : The inputs to the response functions, not required here. response_function_parameters : Additionnal parameters for the response function, not required here. Returns ------- surprise : The model's surprise given the input data. """ surprise = jnp.zeros(len(hgf.node_trajectories[-1]["time_step"])) for binary_input_idx in hgf.input_idxs: surprise += binary_surprise( expected_mean=hgf.node_trajectories[binary_input_idx]["expected_mean"], x=hgf.node_trajectories[binary_input_idx]["mean"], ) # Return an infinite surprise if the model cannot fit surprise = jnp.where( jnp.isnan(surprise), jnp.inf, surprise, ) return surprise
[docs] def binary_softmax( hgf: "HGF", response_function_inputs=ArrayLike, response_function_parameters=ArrayLike, ) -> float: """Surprise under the binary sofmax model. Parameters ---------- hgf : An instance of the HGF model. response_function_inputs : The inputs to the response functions, here containing the decision from the paraticipant at time *k* [0 or 1]. response_function_parameters : Additionnal parameters for the response function, not required here. Returns ------- surprise : The surprise under the binary sofmax model. """ # the expected values at the first level of the HGF beliefs = hgf.node_trajectories[0]["expected_mean"] # the binary surprises surprise = binary_surprise(x=response_function_inputs, expected_mean=beliefs) # ensure that inf is returned if the model cannot fit surprise = jnp.where(jnp.isnan(surprise), jnp.inf, surprise) return surprise
[docs] def binary_softmax_inverse_temperature( hgf: "HGF", response_function_inputs=ArrayLike, response_function_parameters=ArrayLike, ) -> float: r"""Surprise from a binary sofmax parametrized by the inverse temperature. The probability of chosing A is given by: .. math:: P(A|\hat{\mu}^{(k)_{1}, t) = \frac{1}{1+e^{-t\hat{\mu}^{(k)_{1}}} Where :math:`\hat{mu}^{(k)_{1}` is the expected probability of A at the firt level, and :math:`t` is the temperature parameter. Parameters ---------- hgf : An instance of the HGF model. response_function_inputs : The inputs to the response functions, here containing the decision from the paraticipant at time *k* [0 or 1]. response_function_parameters : Additionnal parameters for the response function (optional). Here, the inverse temperature is provided. Returns ------- surprise : The surprise under the binary sofmax model. """ # the expected values at the first level of the HGF beliefs = ( hgf.node_trajectories[0]["expected_mean"] ** response_function_parameters ) / ( hgf.node_trajectories[0]["expected_mean"] ** response_function_parameters + (1 - hgf.node_trajectories[0]["expected_mean"]) ** response_function_parameters ) # the binary surprises surprise = binary_surprise(x=response_function_inputs, expected_mean=beliefs) # ensure that inf is returned if the model cannot fit surprise = jnp.where(jnp.isnan(surprise), jnp.inf, surprise) return surprise