pyhgf.response.binary_softmax_inverse_temperature#
- pyhgf.response.binary_softmax_inverse_temperature(hgf: HGF, response_function_inputs=typing.Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, bool, int, float, complex], response_function_parameters=typing.Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, bool, int, float, complex]) float [source]#
Surprise from a binary sofmax parametrized by the inverse temperature.
The probability of chosing A is given by:
\[P(A|\hat{\mu}^{(k)_{1}, t) = \frac{1}{1+e^{-t\hat{\mu}^{(k)_{1}}}\]Where \(\hat{mu}^{(k)_{1}\) is the expected probability of A at the firt level, and \(t\) is the temperature parameter.
- Parameters:
- hgf
An instance of the HGF model.
- response_function_inputs
The inputs to the response functions, here containing the decision from the paraticipant at time k [0 or 1].
- response_function_parameters
Additionnal parameters for the response function (optional). Here, the inverse temperature is provided.
- Returns:
- surprise
The surprise under the binary sofmax model.