pyhgf.updates.prediction_error.dirichlet.get_candidate#

pyhgf.updates.prediction_error.dirichlet.get_candidate(value: float, sensory_precision: float, expected_mean: Array | ndarray | bool_ | number | bool | int | float | complex, expected_sigma: Array | ndarray | bool_ | number | bool | int | float | complex, n_samples: int = 20000) Tuple[float, float][source]#

Find the best cluster candidate given previous clusters and an input value.

Parameters:
value

The new observation.

sensory_precision

The expected precision of the new observation.

expected_mean

The mean of the existing clusters.

expected_sigma

The standard deviation of the existing clusters.

n_samples

The number of samples that should be simulated.

Returns:
mean

The mean of the new candidate cluster.

sigma

The standard deviation of the new candidate cluster.